федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра Водно-технических изысканий

Рабочая программа дисциплины

ГИДРАВЛИКА (речная)

Основная профессиональная образовательная программа высшего образования по направлению подготовки

05.03.05 «Прикладная гидрометеорология»

Направленность (профиль) **Прикладная гидрология**

Уровень: **Бакалавриат**

Форма обучения **Очная/заочная**

Согласовано Руководитель ОПОП	Председатель УМСИ.И. Палкин
Сакович В.М.	Рекомендована решением Учебно-методического совета РГГМУ 24 моне 2021 г., протокол № 9
	Рассмотрена и утверждена на заседании кафедры « <u>26</u> » <u>мая</u> 2021 г., протокол № 14 Зав. кафедрой Исаев Д.И.
	Автор-разработчик: Санопкая Н.А.

1. Цель и задачи освоения дисциплины

Цель освоения дисциплины — подготовка бакалавров прикладной гидрометеорологии, обучающихся по профилю «Прикладная гидрология», владеющих знаниями в объеме, необходимом для понимания основных физических свойств и сил, действующих в естественных природных потоках.

Задачи связаны с освоением студентами общих законов и уравнений динамики естественных речных потоков, освоение основ гидравлических расчетов неравномерного и неустановившегося режима

2. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина «Гидравлика (речная)» относится к дисциплинам части, формируемой участниками образовательных отношений.

Дисциплина читается в шестом семестре для очной формы обучения и на четвертом курсе для заочной формы обучения.

Для освоения данной дисциплины, обучающиеся должны освоить разделы дисциплин: «Физика», «Информатика», «Теоретическая механика», «Гидромеханика», «Геофизика», «Гидрология суши», «Общая гидравлика».

Дисциплина «Гидравлика (речная)» является базовой для освоения «Математическое моделирование гидрологических процессов», «Водно-технические изыскания», «Динамика русловых потоков», «Русловые процессы», «Водно-балансовые исследования», «Оценка и прогноз русловых процессов в условиях антропогенной деятельности», «Новая измерительная техника в гидрометеорологии».

3. Перечень планируемых результатов обучения

Процесс изучения дисциплины направлен на формирование компетенций: ПК-3, ПК-4

Профессиональные компетенции

Таблица 1

Код и наименова-Код и наименование инние профессиодикатора достижения Результаты обучения нальной компепрофессиональной комтенции петенции ПК-3.1. Применяет стан-ПК-3. Способен Знать: обеспечить проведартные методы топогра-1) методы расчета сопряжения струи в дение топографофо-геодезических, гидронижнем бьефе. Уметь: геодезических, метеорологических и гидгидрометеорологирохимических наблюде-1) проводить измерения и наблюдения; 2) составлять описания проводимых исческих и гидрохиний мических наблю-ПК-3.2. Приводит описаследований; 3) подготавливать данные для составледений ние методов и техничения обзоров, отчетов и научных публиских средств топографогеодезических, гидромекаший: теорологических и гидро-4) составлять отчеты по выполненному химических наблюдений заданию; ПК-3.3. Проводит экспеучаствовать во внедрении результатов наблюдеисследований и разработок. риментальные

Код и наименова- ние профессио- нальной компе- тенции	Код и наименование индикатора достижения профессиональной компетенции	Результаты обучения
	ния за гидрологическими характеристиками, в том числе в лабораторных условиях ПК-3.4. Готовит отчетные материалы по результатам наблюдений и измерений, формулирует выводы.	Владеть: навыками проведения экспериментальных исследований потоков в жестких руслах и расчётов их гидравлических параметров.
ПК-4. Способен анализировать явления и процессы в природной среде, выявлять их закономерности	пк-4.1. Осуществляет анализ явлений и процессов, происходящих в природной среде, на основе данных наблюдений, экспериментальных и модельных данных	Знать: 1) основные законы движения потоков в естественных и искусственных руслах; 2) основные методы расчета движения жидкости в открытых руслах; 3) методы построения кривых свободной поверхности в каналах и реках. Уметь: 1) логически мыслить, обобщать, анализировать, систематизировать профессиональные знания и умения; 2) сознательно применять законы движения потоков в естественных и искусственных руслах к решению широкого круга прикладных (технических) задач; 3) анализировать и интерпретировать данные натурных и лабораторных наблюдений, теоретических расчетов и моделирования 4) самостоятельно использовать расчетный аппарат речной гидравлики для решения вопросов, связанных с определением характеристик движения потоков жидкостей; 5) строить кривые свободной поверхности; 6) производить расчеты потоков с переменным расходом в условиях неравномерного, неустановившегося режима и др. Владеть: 1) методикой гидравлических расчетов с использованием современной справочной литературы и средств обработки информации навыками. 2) способностью к решению гидрометеорологических задач, достижению поставленных критериев и показателей.

4. Структура и содержание дисциплины

4.1. Объем дисциплины

Объем дисциплины составляет 4 зачетные единицы, 144 академических часа.

Таблица 2 Объем дисциплины по видам учебных занятий в академических часах

Всего часов Объём дисциплины Очная форма обучения Заочная форма обучения 144 144 Объем дисциплины 56 Контактная работа 16 обучающихся преподавателем (по видам аудиторных учебных занятий) – всего: в том числе: лекции **28** 8 занятия семинарского типа: практические занятия **28** 8 лабораторные занятия 88 128 Самостоятельная работа (далее – СРС) – всего: в том числе: курсовая работа контрольная работа расчетно-графические 0,5 0,5 работы, ч на 1 чел. промежуточной Вид экзамен экзамен аттестации

4.2. Структура дисциплины

Таблица 3. Структура дисциплины для очной формы обучения

N	, Раздел / тема	Семестр	боты стоят	учебной ра- и, в т.ч. само- сельная рабо- удентов, час.		Формы текущего контроля успева-	Формируе-	Индикаторы достижения	
1	<u>ч</u> дисциплины	Сем	Лекции	Лабораторны занятия	CPC	емости	мые компе- тенции	компетен- ций	
1	Введение. Повторение основных понятий по «Общей гидравлике»	6	2	-	20	Вопросы на лекции, отчет по лабораторной работе	ПК-3, ПК-4	ПК-3.1 ПК-3.2 ПК-3.3 ПК-3.4 ПК-4.1	

		þ	боты стоят	учебно , в т.ч. (ельная удентов	само- рабо-	Формы текущего	_	Индикаторы	
№	Раздел / тема дисциплины	Семестр	Лекции	Лабораторные занятия	CPC	контроля успева- емости	Формируе- мые компе- тенции	достижения компетен- ций	
2	Неравномерное установившееся движение в открытых руслах	6	4	8	12	Вопросы на лекции. Контрольная работа	ПК-4	ПК-4.1	
3	Гидравлический прыжок и сопряжение бьефов	6	8	6	11	Вопросы на лекции, отчет по лабораторной работе, контрольная работа	ПК-3, ПК-4	ПК-3.1 ПК-3.2 ПК-3.3 ПК-3.4 ПК-4.1	
4	Неравномерное установившееся движение воды в реках	6	6	6	11	Вопросы на лекции	ПК-4	ПК-4.1	
5	Неустановившееся безнапорное движение жидкости	6	4	4	11	Вопросы на лек- ции, контрольная работа	ПК-4	ПК-4.1	
6	Движение потока с переменным расходом	6	2	2	11	Вопросы на лекции	ПК-4	ПК-4.1	
7	Деление потока на рукава. Устьевые процессы	6	2	2	12	Вопросы на лекции.	ПК-4	ПК-4.1	
	ИТОГО	-	28	28	88	-	-	-	

Таблица 4

•	\neg				U	1		_	
•		THITTIM	дисциплины	ппп	MOTHIOGRA	dh α	MALT T	α	DITITALL
٠,	. ,	TUVKIVDA	лиспиплины	/1./1 7	заочнои	11111	ומועונו	\cdot	vчсния

	D. /	3	рабо самос рабо	ы учебн эты, в т тоятелі та студ ов, час.	.ч. ьная ен-	Формы текущего	Формируе-	Индикаторы достижения	
Nº	Раздел / тема дисциплины	Kypc	Лекции	Лабораторные занятия	CPC	контроля успевае- мости	мые компе- тенции	компетен- ций	
1	Введение. Повторение основных понятий по «Общей гидравлике»	4	1	-	20	Вопросы на лекции, отчет по лабораторной работе	ПК-3, ПК-4	ПК-3.1 ПК-3.2 ПК-3.3 ПК-3.4 ПК-4.1	

		3	рабо самос рабо то	ы учебн эты, в т тоятелі эта студ ов, час.	.ч. ъная	Формы текущего	Формируе-	Индикаторы достижения
N	Раздел / тема дисциплины	Kypc	Лекции	Лабораторные занятия	CPC	контроля успевае- мости	мые компе- тенции	компетен- ций
2	Неравномерное установившееся движение в открытых руслах	4	2	2	20	Вопросы на лекции. Контрольная работа	ПК-4	ПК-4.1
3	Гидравлический прыжок и сопряжение бьефов	4	1	2	20	Вопросы на лекции, отчет по лабораторной работе, контрольная работа	ПК-3, ПК-4	ПК-3.1 ПК-3.2 ПК-3.3 ПК-3.4 ПК-4.1
4	Неравномерное установившееся движение воды в реках	4	1	1	20	Вопросы на лекции	ПК-4	ПК-4.1
5	Неустановившееся безнапорное движение жидкости	4	1	1	20	Вопросы на лекции, контрольная работа	ПК-4	ПК-4.1
6	Движение потока с переменным расходом	4	1	1	1 14 Вопросы на лекции		ПК-4	ПК-4.1
7	Деление потока на ру- кава. Устьевые про- цессы	4	1	1	14	Вопросы на лекции.	ПК-4	ПК-4.1
	ИТОГО	-	28	28	88	-	-	-

4.3. Содержание *разделов/тем* дисциплины

1. Введение. Повторение основных понятий по «Общей гидравлике»

. . .

2. Неравномерное установившееся движение в открытых руслах.

Общие понятия о неравномерном движении. Удельная энергия сечения. График удельной энергии. Уравнение критического состояния потока. Спокойное и бурное движение. Число Фруда. Дифференциальное уравнение неравномерного движения. Исследования форм кривых свободной поверхности. Интегрирование уравнения неравномерного движения

3. Гидравлический прыжок и сопряжение бьефов.

Понятие о гидравлическом прыжке. Условия возникновения и основное уравнение. Типы сопряжения бьефов. Методы гашения энергии в гидравлическом прыжке. Вычисление основных характеристик прыжка.

4. Неравномерное установившееся движение воды в реках.

Интегрирование уравнения неравномерного движения в реках.

5. Неустановившееся безнапорное движение жидкости.

Общие указания о неустановившемся движении. Классификация волн. Уравнение неразрывности, Уравнение Сен-Венана. Методы решения уравнений неустановившегося движения. Плановые и трехмерные математические модели

6. Движение потока с переменным расходом.

Уравнение Бернулли для потоков с переменным расходом. Расчеты оросительных и мелиоративных каналов

7. Деление потока на рукава. Устьевые процессы.

Деление потока при разветвлении русла. Генезиз и основные гидродинамические особенности поведения потока при бифуркации и слиянии русла. Расчет распределения расхода воды по рукавам. Особенности движения воды и наносов в дельтах устьевых участков рек.

4.4. Содержание занятий семинарского типа

Таблица 5 Содержание лабораторных занятий для очной формы обучения

№ темы дисциплины	Тематика лабораторных занятий	Всего	В том числе часов практи- ческой подго- товки
1	Построение графика удельной энергии сечения	2	2
2	Исследование форм кривых свободной поверхности в призматическом русле	2	2
3	Построение кривой свободной поверхности в прямоугольном русле методом Бернадского	2	2
4	Построение кривой свободной поверхности в прямоугольном русле методом Павловского	2	2
5	Построение кривой свободной поверхности в трапецеидальном русле методом Бернадского	2	2
6	Построение кривой свободной поверхности в трапецеидальном русле методом Павловского	2	2
7	Расчет пропускной способности каналов различной формы сечения	2	2
8	Построение кривой свободной поверхности в прямоугольном русле по ПМП-91	2	2
9	Проектирование канала	2	2
10	Построение кривой свободной поверхности в естественном русле	2	2

№ темы дисциплины	Тематика лабораторных занятий	Всего	В том числе часов практической подготовки
	Моделирование на ЭВМ. Анализ форм кривых естественного русла.	2	2
12	Расчет сложного деления потока с применением ЭВМ	2	2
13	Определение опытным путем в лаборатории значения коэффициента шероховатости для заданного вида поверхности		2
14	Определение потерь энергии в гидравлическом прыжке	2	2

Таблица 6 Содержание лабораторных занятий для заочной формы обучения

№ темы дисциплины	Тематика практических занятий	Всего часов	В том числе часов практи- ческой подго- товки
1	Построение графика удельной энергии сечения	1	1
2	Исследование форм кривых свободной поверхности в призматическом русле	1	1
3	Построение кривой свободной поверхности в прямоугольном русле методом Павловского	1	1
4	Построение кривой свободной поверхности в трапецеидальном русле методом Павловского	1	1
5	Расчет пропускной способности каналов раз- личной формы сечения	1	1
6	Построение кривой свободной поверхности в естественном русле	1	1
7	Определение опытным путем в лаборатории значения коэффициента шероховатости для заданного вида поверхности	1	1
8	Определение потерь энергии в гидравлическом прыжке	1	1

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Исаев Д.И., Саноцкая Н.А., Векшина Т.В. Общая и речная гидравлика. Лабораторный практикум. Учебное пособие для студентов очной и заочной форм обучения по направлению подготовки 05.03.05 - Прикладная гидрометеорология. Направленность (профиль) - Прикладная гидрология. Квалификация (степень) - бакалавр / Российский государственный гидрометеорологический университет. Санкт-Петербург, 2019.

6. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Учет успеваемости обучающегося по дисциплине осуществляется по 100-балльной шкале. Максимальное количество баллов по дисциплине за один семестр – 100:

- максимальное количество баллов за выполнение всех видов текущего контроля 70;
- максимальное количество баллов за посещение лекционных занятий 10;
- максимальное количество баллов за прохождение промежуточной аттестации 30.

6.1. Текущий контроль

Типовые задания, методика выполнения и критерии оценивания текущего контроля по разделам дисциплины представлены в Фонде оценочных средств по данной дисциплине.

6.2. Промежуточная аттестация

Форма промежуточной аттестации по дисциплине – экзамен.

Форма проведения экзамена: устно по билетам.

Перечень вопросов для подготовки к экзамену:

ПК-3:

- 1. Основные понятия гидродинамики. Траектория, линия тока, элементарная струйка, живое сечение, средняя и местная скорости, расход.
- 2. Виды движения жидкости. Уравнение неразрывности для случая установившегося движения.
- 3. Истечение жидкости из отверстий. Общие понятия и определения. Коэффициент расхода.
- 4. Истечение жидкости из насадков. Общие понятия и определения. Коэффициент расхода насадка.
- 5. Расчет времени опорожнения призматического резервуара.
- 6. Истечение жидкости из непризматических резервуаров.
- 7. Водосливы. Классификация водосливов.
- 8. Основная расчетная формула для водосливов.
- 9. Водосливы с тонкой стенкой и водосливы практического профиля.
- 10. Водосливы с широким порогом.
- 11. Точность определения расхода воды через водосливы.
- 12. Основное уравнение равномерного движения. Формула Шези.
- 13. Коэффициент Шези. Способы определения коэффициента Шези. Коэффициент шероховатости. Способы определения коэффициента шероховатости.
- 14. Гидравлически наивыгодный профиль живого сечения. Понятие о критических скоростях.
- 15. Основные типы задач на проектирование при равномерном движении.
- 16. Гладкие и шероховатые стенки. Графики Зегжда и Никурадзе

ПК-4:

- 17. Основные физические свойства жидкости. Кинематический коэффициент вязкости. Модель сплошной среды.
- 18. Гидростатическое давление. Два основных свойства гидростатического давления.
- 19. Основное уравнение гидростатики в дифференциальной форме. Относительный и абсолютный покой.
- 20. Закон распределения гидростатического давления по глубине. Сила гидростатического давления. Поверхности равного давления.
- 21. Центр давления. Способы определения положения центра давления. Расчет силы гидростатического давления на плоскую фигуру. Графоаналитический метод.

- 22. Расчет силы гидростатического давления на плоскую фигуру. Аналитический метол.
- 23. Гидростатическое давление на криволинейные поверхности.
- 24. Расчет силы гидростатического давления на дно сосуда. Гидростатический паралокс.
- 25. Основы теории плавания. Понятие о метацентре.
- 26. Пьезометрическая высота. Вакуум. Удельная потенциальная энергия.
- 27. Ламинарный и турбулентный режимы движения жидкости. Число Рейнольдса. Критические числа Рейнольдса.
- 28. Закон Ньютона о внутреннем трении в жидкости. Единичная сила трения. Расчет характеристик движения жидкости при ламинарном режиме.
- 29. Модель турбулентного течения. Касательные напряжения в турбулентном потоке.
- 30. Вывод уравнения Бернулли для элементарной струйки.
- 31. Уравнение Бернулли для потока реальной жидкости. Коэффициент Кориолиса.
- 32. Потери энергии при движении жидкости. Местные и путевые потери.
- 33. Удельная энергия сечения. График удельной энергии.
- 34. Уравнение критического состояния потока. Число Фруда.
- 35. Критическая глубина. Определение критической глубины для русел различных форм сечения. Критическая скорость и уклон.
- 36. Дифференциальное уравнение неравномерного движения в открытых руслах
- 37. Дифференциальное уравнение неравномерного движения в призматических руслах. Подходы к интегрированию уравнения в призматическом русле.
- 38. Интегрирование уравнения неравномерного движения по способу Б.А. Бахметева. и Н.Н. Павловского.
- 39. Анализ форм кривых свободной поверхности. Случай I>0.
- 40. Анализ форм кривых свободной поверхности. Случай I=0.
- 41. Анализ форм кривых свободной поверхности. Случай I<0.
- 42. Неравномерное движение в естественных руслах. Принципы разбивки водотока на участки. Учет лимитирующего створа.
- 43. Дифференциальное уравнение неравномерного движения в естественных руслах. Общий прием построения КСП.
- 44. Модуль сопротивления. Применение модуля сопротивления для построения КСП.
- 45. Построение КСП по способу Рахманова, Бернадского, Павловского.
- 46. Построение КСП в руслах с поймой и при делении русла на рукава.
- 47. Деление русла на рукава. Дельты. Принципы построения КСП при сложных дельтах.
- 48. Гидравлический прыжок. Основное уравнение гидравлического прыжка.
- 49. Гидравлический прыжок. Прыжковая функция.
- 50. Гидравлический прыжок. Виды сопряжения бъефов.
- 51. Неустановившееся движение. Виды волн.
- 52. Дифференциальное уравнение неравномерного, неустановившегося движения.
- 53. Уравнение неразрывности для случая неравномерного, неустановившегося движения
- 54. Особенности движения паводочных волн. Правило четырех максимумов

Перечень практических заданий к экзамену

ПК-3:

- 1. Из резервуара с площадью поперечного сечения через отверстие в стенке вода поступает в смежный резервуар, имеющий площадь. Отверстие расположено на высоте от дна. Определить глубину после выравнивания горизонтов и необходимое для этого время, если в момент открытия отверстия глубина в первом резервуаре была, а второй был пуст. Притока в резервуары извне нет.
- 2. Из резервуара с площадью поперечного сечения через отверстие в стенке вода поступает в смежный резервуар, имеющий площадь. Отверстие расположено на высоте от дна. Через какое время после открытия отверстия из первого резервуара во второй вытечет вода в количестве?

В момент открытия отверстия глубина в первом резервуаре была, а второй был пуст. Притока в резервуары извне нет.

Указание. Время будет состоять из двух периодов: 1) истечение при переменном напоре в атмосферу за время наполнения второго резервуара до центра отверстия; 2) истечения при переменном напоре под переменный уровень.

- 3. Грубо бетонированный прямоугольный канал шириной переходит с на . В начале горизонтального участка глубина . Определить вид свободной поверхности на обоих участках канала, если .
- 4. Установить характер сопряжения потока в прямоугольном канале шириной при изменении уклона дна с на , если , а коэффициент шероховатости .
- 5. Определить расход прямоугольного водослива с широким порогом, если напор перед водосливом, скорость воды в канале перед водосливом, высота порога водослива, глубина за порогом водослива, ширина водослива. Ребро порога не округленное ().
- 6. Определить гидравлический показатель русла для трапецеидального канала, зная коэффициент шероховатости стенок и дна канала, ширину канала понизу, нормальную глубину; на рассматриваемом участке глубины изменяются от до . Коэффициент заложения откосов.
- 7. Через щитовое отверстие перед перепадом надо пропустить расход. На какую высоту надо поднять щит, если напор перед щитом, ширина отверстия. Истечение свободное ().
- 8. Берег реки, изображенный в поперечном разрезе на рис., слагается из водонепроницаемого пласта, имеющего уклон в сторону реки и лежащего поверх него водопроницаемого песчаного слоя, имеющего коэффициент фильтрации . В водопроницаемого слое, параллельно берегу реки, на расстоянии 800 м от нее, проходит магистральный канал оросительной системы. Расход грунтового потока, протекающего со стороны канала к реке, равен на один сантиметр. Отметка водопроницаемого слоя у выхода его в реку равна 7,60 м. Отметка горизонта воды в канале равна 19,42. Построить кривую депрессии грунтового потока.
- 9. Установить, возможно ли запроектировать канал для пропуска при , и так, чтобы средняя скорость течения была .
- 10. Определить, с какой максимальной скоростью возможно пропустить расход в канале с полуторным откосом при .
- 11. Определить расход воды в канале сегментного сечения при следующих данных: , , , .

12. Определить пропускную способность кротовой дрены при и.

Указание. Определить пропускную способность кротовой дрены как безнапорной трубы при сплошном затоплении.

13. Определить расход воды в канале сегментного сечения при следующих данных:,,,.

ПК-4:

- 14. Определить тип укрепления и продольный уклон, который необходимо придать дну канала, профиль которого должен быть гидравлически наивыгоднейшим при следующих условиях: расчетный расход, коэффициент заложения откосов, ширина русла по дну.
- 15. Определить пропускную способность проложенного в лёссовом грунте канала трапецеидальной формы и среднюю скорость в канале по заданным элементам: ширина по дну, глубина, коэффициент заложения левого откоса, правого ; продольный уклон. Коэффициент Шези определить по формулам Маннинга и Павловского.
- 16. Определить расход воды в канале сегментного сечения при следующих данных:,,,.
- 17. Определить глубину после прыжка в русле трапецеидального поперечного сечения шириной по дну, если расход, коэффициент заложения откосов, глубина до прыжка, а критическая глубина.
- 18. Определить, при каком расходе воды в трапецеидальном русле шириной по дну и с коэффициентом заложения откосов сопряженные глубины будут равны: , .
- 19. Определить форму прыжка, его высоту и глубину после прыжка в русле прямоугольного сечения, если расход, ширина русла, глубина воды перед прыжком.
- 20. Намечено проложить канал трапецеидального сечения в глинистом грунте (коэффициент пористости 0,8; влажность на границе раскатывания 20%), обеспечивающем возможность принять коэффициенты откосов. В соответствии с рельефом местности продольный уклон канала должен быть принят равным. Канал должен быть запроектирован на расход потока, содержащего взвешенные наносы со средним размером частиц.
- Требуется определить среднюю скорость потока в канале, соответствующую гидравлически наивыгоднейшей форме поперечного сечения канала, оценить возможность при этой скорости заиления канала или его размыва; в случае необходимости выбрать одежду канала, обеспечивающую отсутствие размыва.
- 21. Канава трапецеидального сечения с коэффициентом откосов проложена в несвязном грунте со средним размером частиц. Ширина канавы по дну, глубина воды в канаве, уклон дна канавы. Определить расход, скорость воды и допускаемую скорость для грунта на дне канавы.
- 22. Определить расход, который пропускает земляное русло, состоящее из главного русла и двусторонней поймы при следующих данных: , , , , , , .
- 23. Рассчитать трапецеидальный бетонированный канал гидравлически наивыгоднейшего профиля при расходе, коэффициенте заложения откосов, уклоне дна, коэффициенте шероховатости. Определить также среднюю скорость движения воды.
- 24. Можно ли запроектировать незиляемый канал трапецеидальной формы для пропуска при следующих данных: мутность воды, средневзвешенная гидравлическая крупность наносов, коэффициент заложения откосов, уклон дна, коэффициент шероховатости?
- 25. Какую ширину по дну должен иметь трапецеидальный канал длиной 2000 км, если для пропуска расхода при глубине наполнения используется разность отметок дня в 50 м? Известно, что коэффициент заложения откосов, коэффициент шероховатости.
- 26. Судоходный оросительный канал имеет поперечное сечение, изображенное на рис. (размеры в метрах).

Откосы 1:1,5 и 1:2,5 укреплены каменным мощением (), а откосы 1:4 и дно не облицованы (). Определить необходимый уклон дна канала для пропуска расхода воды при глубине наполнения .

6.3. Балльно-рейтинговая система оценивания

Таблица 7

Таблина 8

Распределение баллов по видам учебной работы

Вид учебной работы, за которую ставятся баллы	Баллы
Посещение лекционных занятий	0-10
Лабораторная работа №1	0-3
Лабораторная работа №2	0-3
Лабораторная работа №3	0-3
Лабораторная работа №4	0-3
Лабораторная работа №5	0-3
Лабораторная работа №6	0-3
Лабораторная работа №7	0-3
Лабораторная работа №8	0-3
Лабораторная работа №9	0-3
Лабораторная работа №10	0-3
Лабораторная работа №11	0-3
Лабораторная работа №12	0-3
Лабораторная работа №13	0-3
Лабораторная работа №14	0-3
Контрольная работа	0-18
Промежуточная аттестация	0-30
ИТОГО	0-100

Минимальное количество баллов для допуска до промежуточной аттестации составляет 40 баллов при условии выполнения всех видов текущего контроля.

Балльная шкала итоговой опенки на экзамене

Danieliani Eliania ili eleginia equilia ila	
Оценка	Баллы
Отлично	85-100
Хорошо	65-84
Удовлетворительно	40-64
Неудовлетворительно	0-39

7. Методические рекомендации для обучающихся по освоению дисциплины

Методические рекомендации ко всем видам аудиторных занятий, а также методические рекомендации по организации самостоятельной работы, в том числе по подготовке к текущему контролю и промежуточной аттестации представлены в Методических рекомендации для обучающихся по освоению дисциплины «Название дисциплины».

8. Учебно-методическое и информационное обеспечение дисциплины

8.1. Перечень основной и дополнительной учебной литературы

Основная литература

- 1. *Штеренлихт Д.В.* Гидравлика. М.: КолосС, 2008. 656с.
- 2. Спицын И.П., Соколова В.А. Общая и речная гидравлика. Л.: Гидрометеоиздат, 1990.-356 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/img-224142456.pdf

3. Справочник по гидравлическим расчетам/ Под ред. П.Г. Киселева. Изд 4-е, пер. и доп.-М.: Энергия.1972.-321 с.

Дополнительная литература

- 1 Чугаев Р.Р. Гидравлика. Изд 4-е , пер. и доп. М.: Энергия. 1982. 672 с.
- 2. Гиргидов А.Д. Механика жидкости и газа. СПб.: изд. Политехн. ун-та, 2007. 545 с.

8.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"

http://eknigi.org/nauka_i_ucheba/155297-gidravlika-obshhij-kurs.html http://www.techgidravlika.ru/view_book_menu.php?book=1&page=1/http://www.hec.usace.army.mil/software/hec-ras/

8.3. Перечень программного обеспечения

- 1. Microsoft Windows (48130165 21.02.2011)
- 2. Microsoft Office (49671955 01.02.2012)

8.4. Перечень информационных справочных систем

- 1. СПС Консультант Плюс;
- 2. ЭБС «ГидроМетеоОнлайн». Режим доступа: http://elib.rshu.ru/
- 3. Национальная электронная библиотека (НЭБ). Режим доступа: https://нэб.рф
- 4. ЭБС «Znanium». Режим доступа: http://znanium.com/
- 5. ЭБС «Проспект Науки». Режим доступа: http://www.prospektnauki.ru/
- 6. Электронно-библиотечная система elibrary. Режим доступа: https://elibrary.ru/
- 7. Электронная библиотека РГО. Режим доступа: http://lib.rgo.ru/dsweb/HomePage
- 8. Государственная публичная научно-техническая библиотека СО РАН. Режим доступа: http://www.spsl.nsc.ru

8.5. Перечень профессиональных баз данных

- 1. Электронно-библиотечная система elibrary;
- 2. База данных издательства SpringerNature;
- 3. Всероссийский научно-исследовательский институт гидрометеорологической информации Мировой центр данных. Режим доступа: http://meteo.ru/

9. Материально-техническое обеспечение дисциплины

Учебная аудитории для проведения занятий лекционного типа — укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации: портативным компьютером (ноутбуком), переносным экраном, мультимедиа-проектором.

Учебная аудитории для проведения занятий лабораторного типа — укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации: портативным компьютером (ноутбуком), переносным экраном, мультимедиа-проектором, расположенная рядом с лабораторией кафедры водно-технических изысканий.

Учебная аудитория для групповых и индивидуальных консультаций — укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации: портативным компьютером (ноутбуком), переносным экраном, мультимедиа-проектором.

Учебная аудитория для текущего контроля и промежуточной аттестации — укомплектована специализированной (учебной) мебелью, техническими средствами обу-

чения, служащими для представления учебной информации: портативным компьютером (ноутбуком), переносным экраном, мультимедиа-проектором.

Помещение для самостоятельной работы — укомплектовано специализированной (учебной) мебелью, оснащено компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечено доступом в электронную информационно-образовательную среду организации. Самостоятельная работа проводится в читальном зале библиотеки, а также в лаборатории кафедры водно-технических изысканий, укомплектованной: компьютерами, копировально-множительной техникой, мультимедиа оборудованием (переносные проектор, экран).

10. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.

11. Возможность применения электронного обучения и дистанционных образовательных технологий

При реализации дисциплины электронное обучение и дистанционные образовательные технологии применяются.