федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ **УНИВЕРСИТЕТ**

Кафедра Метеорологии, климатологии и охраны атмосферы

Рабочая программа по дисциплине

РЕЖИМ ОСАДКОВ В АРКТИКЕ

Основная профессиональная образовательная программа высшего образования программы бакалавриата по направлению подготовки

05.03.05 Прикладная гидрометеорология

Направленность (профиль): Прикладная метеорология

> Квалификация: Бакалавр

Форма обучения Очная/заочная

Согласовано Руководитель ОПОП «Прикладная метеорология»

Волобуева О.В.

Председатель УМС Уменя И.И. Палкин

Рекомендована решением

Учебно-методического совета РГГМУ

«<u>19</u>» <u>шая</u> 2021 г., протокол № <u>8</u>

Рассмотрена и утверждена на заседании кафедры МКОА

« /2 » *шае* 2021 г., протокол № 9 _Сероухова О.С.

Зав. кафедрой___

Авторы-разработчики:

Кашлева Л.В.

Санкт-Петербург 2021

1. Цели освоения дисциплины

Цели изучения дисциплины «Режим осадков в Арктике»- получение бакалаврами комплекса научных знаний, позволяющих им освоить современные представления о строении, условиях формирования и развития облаков различных форм. Рассматриваются основные разделы: микрофизическое и макрофизическое строение облаков, их мезоструктура, формирования. Бакалавр должен знать средства и методы исследования облачных процессов. Значительный акцент — освоение практических навыков, предназначенных для выполнения научно-исследовательских работ в области изучения процессов, определяющих особенности режима осадков в Арктике.

Основные задачи изучения дисциплины:

- изучение основных процессов формирования облаков и облачных систем в Арктике;
- изучение особенностей режима осадков в полярных региона

Место дисциплины в структуре ОПОП

Дисциплина «**Режим осадков в Арктике**» для направления подготовки 05.03.05 — Прикладная гидрометеорология по профилю подготовки «Прикладнаяная», относится к дисциплинам факультативной части общепрофессионального цикла.

Дисциплина включает в себя изучение условий возникновения и развития облаков и изучения процессов, определяющих особенности режима осадков в Арктике.

Основные разделы «**Режим осадков в Арктике**» связаны со знанием следующих дисциплин:

«Физика атмосферы, океана и вод суши» - для понимания процессов фазовых переходов в атмосфере;

«Климатология» - для понимания процедур статистической обработки результатов измерений;

«Синоптическая метеорология» - для понимания влияния факторов атмосферной циркуляции на формирование облаков.

Дисциплина «Физика облаков» является комплексной дисциплиной и обучающиеся должны для ее освоения иметь знания как по отдельным разделам фундаментальных дисциплин ("Математика", "Физика", "Информатика", "География"), так и знать прикладные дисциплины по специальности, такие как: "Физика атмосферы, океана и вод суши", "Климатология", "Синоптическая метеорология", ««Учебная практика по получению первичных профессиональных умений и навыков», «Учебная практика по получению первичных умений и навыков научно-исследовательской деятельности».

Параллельно с дисциплиной «Режим осадков в Арктике» изучаются: «Климатология», «Космическая метеорология», «Авиационная метеорология», «Контроль загрязнения природной среды», «Автоматические метеорологические станции общего и специального назначения» и «Физика облаков».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс изучения дисциплины направлен на формирование профессиональных компетенции выпускников ПК-2.1; ПК-5.1; ПК-6.1

Таблица 1 - Профессиональные компетенции

Код и Код и наименование	Результаты обучения
--------------------------	---------------------

наименование профессиональной компетенции ПК — 2 Способен	индикатора достижения профессиональной компетенции ПК-2. Осуществляет	Знать: Процессы облакообразования и
анализировать явления и процессы природной среды, выявлять их закономерности	анализ явлений и процессов, происходящих в природной среде, на основе данных наблюдений, экспериментальных и модельных данных	генетико-морфологическую классификацию облаков (ГМК) - Микрофизическую структуру и микрофизические процессы в облаках -Электрическую структуру облаков Уметь: Проводить расчеты кривой стратификации и кривой состояния; Владеть: методами расчета основных параметров облаков различных групп ГМК.
ПК-5 - Способен систематизировать метеорологическую информацию, полученную различными способами	ПК-5.1 - Использует различные источники (данные наблюдений, экспериментов и результатов моделирования) и методы получения информации о конкретном явлении или процессе.	Знать: - Микрофизическую структуру и микрофизические процессы в облаках Уметь: - найти о обработать данные станций о метеорологических величинах Владет: навыками построения временного изменения интенсивности осадков в исследуемом регионе
ПК-6 - Способен учитывать влияние суровых метеорологических условий на организм человека	ПК-6.1 - Выявляет погодно-климатические особенности полярного региона	Знать: факторы, определяющие метеорологический режим полярного региона Уметь: обрабатывать данные радиозондирования атмосферы Владеть: навыками сопоставления временного хода интенсивности осадков и других метеовеличин в полярном регионе

4. Структура и содержание дисциплины

Объем дисциплины составляет 3 зачетные единицы, 108 академических часа.

Таблица 2. - Объем дисциплины по видам учебных занятий в академических часах

Объём дисциплины	Всего часов	
	Очная форма	
	обучения	
Общая трудоёмкость дисциплины	108	
Контактная работа обучающихся с	42	
преподавателям (по видам аудиторных учебных		
занятий) — всего:		

в том числе:	
лекции	14
практические занятия	28
Самостоятельная работа (СРС) – всего:	66
Вид промежуточной аттестации (зачет)	зачет

4.1. Структура дисциплины

Таблица 3. - Структура дисциплины для очной формы обучения

№ п/п	Разделы дисциплины	естр	Виды учебной работы, в т.ч. самостоятельная работа студентов, час.		Формы текущего	Формируемые	Индикаторы достижения	
		Сем	Лекции	практичес	CPC	контроля успеваемости	компетенции	компетенций
1	Динамичес ие процессы в атмосфере, приводящие к образованию облаков		6	10	22	Решение задач доклады по темам	ПК-2 ПК-5	ПК-2.1 ПК-5.1
2	Микрофизичес кое строение облаков		2	8	22	Решение задач по темам	ПК-2 ПК-5	ПК-2.1 ПК-5.1
3	Особенност и режима осадков в Арктике		6	10	22	Решение задач по темам	ПК-2 ПК-6	ПК-2.1 ПК-6.1
(ИТОГО 14 28 66 С учетом трудозатрат на подготовку и сдачу зачета						108	

4.2. Содержание разделов дисциплины

1. Динамические процессы в атмосфере, приводящие к образованию облаков

Атмосферные процессы, приводящие к образованию облаков. Классификация облаков. Глобальные характеристики облачного покрова в Арктике.

Макрофизические характеристики слоистообразных и волнистых облаков: вертикальная мощность, температурное поле, турбулентрность в зоне СО и ВО.

Атмосферные процессы, приводящие к образованию ВО. Фронтальные облачные системы. Мезоструктура атмосферных фронтов

2. Микрофизическое строение облаков

Фазовое строение облаков. Микроструктура капельных, кристаллических и смешанных облаков.

Капли в смешанных облаках. Размеры и форма кристаллов. Скорость падения кристаллов и их ориентация. Интегральные характеристики микроструктуры облаков

3. Особенности режима осадков в Арктике.

Особенности метеорологического режима Арктического бассейна.

Синоптические процессы в Арктике. Факторы, определяющие режим осадков региона. Особенности режима осадков в Арктике.

Метеорологический режим и режим осадков Арктического бассейна по данным дрейфующих станций.

4.4. Содержание занятий семинарского типа

Таблица 5. - Содержание практических занятий для очной формы обучения

№ раздела дисциплины Тематика занятий Всего часов

1 Динамические процессы в

атмосфере, приводящие

к образованию облаков

Решение задач 10

2 Микрофизическое строение облаков

Решение задач 6

3 Особенности режима осадков в

4 Арктике

Решение задач 12

6.1. Текущий контроль

Типовые задания, методика выполнения и критерии оценивания текущего контроля по разделам дисциплины представлены в Фонде оценочных средств по данной дисциплине.

6.2. Промежуточная аттестация

Форма промежуточной аттестации по дисциплине – зачет.

Форма проведения зачета - по билетам

Перечень вопросов к зачету по дисциплине «Физика облаков»:

ПК-2.1; ПК-5.1; ПК-6.1

- 1. Основные формы облаков.
- 2. Атмосферные процессы, приводящие к образованию облаков.
- 3. Влияние упорядоченных, конвективных и турбулентных вертикальных движений на облакообразования.
 - 4. Влияние радиационных факторов на облакообразование.

- 5. Классификация облаков.
- 6. Глобальные характеристики облачного покрова.
- 7. Микроструктура облаков и осадков, содержащих капли.
- 8.. Относительная влажность в облаках и туманах.
- 9. Микроструктура туманов. Микроструктура облаков. Формирования распределения капель по размерам в облаках и туманах.
 - 10. Среднее расстояние между каплями в облаках и туманах.
 - 11. Микроструктура дождя.
 - 12. Микроструктура облаков и осадков, содержащих ледяные частицы.
 - 13. Размеры, форма и концентрации снежинок, снежных хлопьев, крупы и града.
 - 14. Методы оценки режима осадков региона.
 - 15. Режим осадков Заполярья ЕТР
 - 16. Режим осадков Заполярья АТР.

6.3. Балльно-рейтинговая система оценивания

Таблица 6. - Распределение баллов по видам учебной работы

Вид учебной работы, за которую ставятся баллы	Баллы		
Посещение лекционных занятий	10		
Решение задач по темам	20		
Индивидуальные задания по темам			
Промежуточная аттестация (зачет)	50		
ΙΑΤΟΓΟ 100			

ИТОГО 100

Таблица 7 - Распределение дополнительных баллов

Дополнительные баллы

(баллы, которые могут быть добавлены до 100) Баллы

Участие в конференции 5

ИТОГО 5

Минимальное количество баллов для допуска до промежуточной аттестации составляет 35 баллов при условии выполнения всех видов текущего контроля.

Таблица 9 - Балльная шкала итоговой оценки на экзамене

Оценка Баллы Отлично 85-100

Хорошо 65-84

Удовлетворительно 40-64

Неудовлетворительно 0-39

7. Методические рекомендации для обучающихся по освоению дисциплины

Методические рекомендации ко всем видам аудиторных занятий, а также методические рекомендации по организации самостоятельной работы, в том числе по подготовке к текущему контролю и промежуточной аттестации представлены в Методических рекомендации для обучающихся по освоению дисциплины «Режим осадков в Арктике».

- 8. Учебно-методическое и информационное обеспечение дисциплины
- 8.1. Перечень основной и дополнительной учебной литературы
- а) Основная литература:
 - 1. Матвеев Л.Т. Физика атмосферы. СПб.: Гидрометеоиздат, 2000.

- 2. Андреев А.О., М.В. Дукальская, Е.Г. Головина. Облака: происхождение, классификация, распознавание. Учебное пособие. С.-Пб. РГГМУ, 2007
- 3. Экологический мониторинг атмосферы: Учебное пособие / И.О. Тихонова, В.В. Тарасов, Н.Е. Кручинина. 2-е изд., перераб. и доп. М.: Форум: НИЦ ИНФРА-М, 2014. 136 с. http://znanium.com/bookread2.php?book=424281

б) дополнительная литература:

- 1. Глобальные климатические изменения : региональные эффекты, модели, прогнозы : Материалы международной научно-практической конференции (г. Воронеж, 3-5 октября 2019г.) / Под общ. редакцией С.А. Куролапа, Л.М. Акимова, В.А. Дмитриевой. Воронеж: Издательство «Цифровая полиграфия», 2019. Том 2. 444 с.
- 2. Диагностический анализ состояния окружающей среды Арктической зоны Российской Федерации (Расширенное резюме). Отв. редактор Б.А. Моргунов. М.: Научный мир, 2011. 200 с.:ил.
- 3. Ивлев Л.С., Довгалюк Ю.А. Физика атмосферных аэрозольных систем. СПб.: НИИХ СПбГУ, 1999. 194 с.
- 4. Мазин И.П., Хргиан А.Х. Облака и облачная атмосфера Справочник. Л.: Гидрометиздат, 1989. 647с. Мазин И.П., Хргиан А.Х. Облака и облачная атмосфера Справочник. Л.: Гидрометиздат, 1989. 647с.2. МазинИ.П., Шметтер С.М. Облака, строение и физика образования. Л. Гидрометеоиздат, 1983.
- 5. Pruppacher, H. and J. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 2nd edition, 954 pp. Seifert, A. and K. D. Beheng, 2006

в) Интернет-ресурсы:

http://elib.rshu.ru/ - Электронно-библиотечная система ГидроМетеОнлайн (учебники, учебные пособия, монографии, статьи по гидрометеорологии)

http://elibrary.ru/ - Научная электронная библиотека eLIBRARY.RU

http://www.rfbr.ru/rffi/ru/library - электронная библиотека РФФИ

http://www.springer.com/ - научное издательство Springer (материалы по геофизическим, экологическим географическим направлениям научных исследований, по общественным, социальным, гуманитарным наукам и информационным технологиям)

http://archive.neicon.ru/xmlui/handle/123456789/1391849/browse?type=source - Annual Reviews - американское некоммерческое академическое издательство (книги и около 40 серий журналов и ежегодников, публикующих крупные обзорные статьи по естественным и социальным наукам).

http://archive.neicon.ru/xmlui/handle/123456789/905824/browse?type=source - Издательство Кембриджского университета (предоставляет академические некоммерческие электронные ресурсы для научных исследований)

http://archive.neicon.ru/xmlui/handle/123456789/1417890/browse?type=source-Издательство Оксфордского университета Oxford University Press предоставляет электронный архив научной периодики (в базе данных представлены журналы по различным отраслям знания, сгруппированные по 27 предметным рубрикам).

http://archive.neicon.ru/xmlui/handle/123456789/1947637/browse?type=source - Nature — один из самых старых и авторитетных общенаучных журналов. Публикует оригинальные исследования, посвященные широкому спектру вопросов естественных наук.

http://archive.neicon.ru/xmlui/handle/123456789/2757634/browse?type=source - SAGE Journals Online — архив научных журналов издательства SAGE Publications. Компания SAGE Publications является одним из ведущих международных издательств журналов, книг и электронных средств массовой информации для научных, образовательных и профессиональных сообществ. Компания издает более 600 журналов в области естествознания, гуманитарных и социальных наук, техники и медицины.

- 8.5. Перечень профессиональных баз данных
- 1. Электронно-библиотечная система elibrary;
- 2. База данных издательства SpringerNature;
- 3. База данных Web of Science
- 4. База данных Scopus

9. Материально-техническое обеспечение дисциплины

Материально-техническое обеспечение программы соответствует действующим санитарно-техническим и противопожарным правилам и нормам и обеспечивает проведение всех видов лекционных, практических занятий и самостоятельной работы бакалавров.

Учебный процесс обеспечен аудиториями, комплектом лицензионного программного обеспечения, библиотекой РГГМУ.

Учебная аудитория для проведения занятий лекционного типа — укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации, презентационной переносной техникой.

Учебная аудитория для проведения занятий практического типа - укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации, презентационной переносной техникой.

Учебная аудитория для проведения ознакомительных занятий о проведении Метеорологических наблюдений – аудитория 105 (Учебная Метеостанция)

Учебная аудитория для групповых и индивидуальных консультаций - укомплектована специализированной (учебной) мебелью.

Учебная аудитория для текущего контроля и промежуточной аттестации - укомплектована специализированной (учебной) мебелью.

Помещение для самостоятельной работы — укомплектовано специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации, оснащено компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечено доступом в электронную информационно-образовательную среду организации.

10. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.

11. Возможность применения электронного обучения и дистанционных образовательных технологий

Дисциплина может реализовываться с применением электронного обучения и дистанционных образовательных технологий