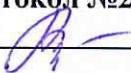


**федеральное государственное бюджетное образовательное учреждение
высшего образования
РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ
УНИВЕРСИТЕТ**

Кафедра зарубежной филологии и прикладных коммуникаций

Фонд оценочных средств дисциплины

Б1.О.03 Иностранный язык (продвинутый уровень)


Основная профессиональная образовательная программа
высшего образования по направлению подготовки
(сетевая форма реализации)

03.04.01 Прикладные математика и физика

Направленность (профиль):
«Физические исследования инновационных материалов»

Уровень:
Магистратура

Форма обучения
Очная

Рассмотрена и утверждена на заседании кафедры
08.09.2022 г., протокол №2
Зав. кафедрой Родичева А.А.

Автор-разработчик:
к.т.н., Ярмухаметова Ф.М.

**1. Паспорт фонда оценочных средств по дисциплине
«Иностранный язык (Продвинутый уровень)»**

Таблица 1. Перечень оценочных средств текущего контроля

№	Раздел/ тема дисциплины	Формируемые компетенции	Наименование средств текущего контроля
1	Раздел 1. Механика и ее основные разделы. Законы механики. Выдающиеся ученые, работавшие в области механики.	УК-4	Задание для проведения зачета, контрольные работы для текущего контроля, задание для проведения моделируемой ситуации «Конференция» Задание для составления делового письма - приглашения
2	Раздел 2. Машиностроение. Тема 1. Сопротивление материалов. Материалы, применяемые в машиностроении.	УК-4	Задание для проведения зачета, контрольные работы для текущего контроля, задание для проведения моделируемой ситуации «Конференция» Задание для составления делового письма - приглашения
3	Раздел 2: Машиностроение. Тема 2: Типы двигателей.	УК-4	Задание для проведения зачета, контрольные работы для текущего контроля, задание для проведения моделируемой ситуации «Конференция» Задание для составления делового письма - приглашения
4	Раздел 3: Электротехника и электроника Тема 1: Законы электротехники.	УК-4	Экзаменационные билеты, контрольные работы для текущего контроля, задание для проведения моделируемой ситуации «Конференция» Задание для составления аннотации статьи
5	Раздел 3: Электротехника и электроника Тема 2: Тенденции развития электроники. Инновационные материалы в электронике.	УК-4	Экзаменационные билеты, контрольные работы для текущего контроля, задание для проведения моделируемой ситуации «Конференция» Задание для составления аннотации статьи
Форма промежуточной аттестации: экзамен			

2. Перечень компетенций, с указанием этапов их формирования в процессе освоения дисциплины

Таблица 2. Перечень компетенций, формируемых в процессе освоения дисциплины

Формируемые компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Виды оценочных средств
УК-4 Способен применять современные коммуникативные технологии, в том числе на иностранном(ых) языке(ах), для академического и профессионального взаимодействия	<p>Знать:</p> <ul style="list-style-type: none"> - особенности системы изучаемого иностранного (английского) языка в его фонетическом, лексическом и грамматическом аспектах; социокультурные и языковые нормы профессионального общения, а также правила речевого этикета, позволяющие специалисту эффективно использовать иностранный язык как средство общения в современном поликультурном мире; <p>Уметь:</p> <ul style="list-style-type: none"> - читать и переводить литературу по специальности без словаря с целью поиска необходимой информации; - вести деловую переписку; - составлять аннотации научных статей; - участвовать в дискуссиях профессионального характера; - выступать с докладом на иностранном языке на конференциях, семинарах с использованием мультимедийной презентации. 	<p>Задания репродуктивного уровня:</p> <ul style="list-style-type: none"> - Письменный перевод
	<p>Владеть:</p> <ul style="list-style-type: none"> - навыками и умениями общения посредством языка, т.е. передавать мысли и обмениваться ими в различных ситуациях в процессе взаимодействия с другими участниками общения, правильно использовать систему языковых, социокультурных и речевых норм; - способностью выбирать способы коммуникативного поведения, адекватные аутентичной ситуации общения; - умениями построения целостных, связанных и логичных высказываний разных функциональных стилей речи; - умениями перевода научной литературы, деловой переписки, подготовки устного выступления. 	<p>Задания реконструктивного уровня:</p> <ul style="list-style-type: none"> - Комплект экзаменационных билетов - Задания для проведения зачета
		<p>Задания практико-ориентированного / исследовательского / творческого уровня:</p> <p>моделируемые ситуации, составление аннотации статьи, написание делового письма</p>

3. Балльно-рейтинговая система оценивания

Таблица 3. Распределение баллов по видам учебной работы – 1 и 2 семестр

Вид учебной работы, за которую ставятся баллы	Баллы
Текущий контроль:	0-100
в том числе промежуточная аттестация	0-30
ИТОГО	0-100

Таблица 7.1. Распределение баллов по текущему контролю успеваемости

1 семестр			
№	Вид работ	Min	Max
1. Обязательная часть			
1.1	Текущий контроль успеваемости по проверке сформированности остаточных знаний		
	Текущий контроль успеваемости (ТКУ)	0	10
1.2	Выполнение практических работ		
1.2.1	Механика и ее основные разделы. Тема 1. Законы механики. Выдающиеся ученые, работавшие в области механики.	10	15
1.2.2	Машиностроение. Тема 1. Сопротивление материалов. Материалы, применяемые в машиностроении	10	15
	Итого баллов по обязательной части	20	40
2. Вариативная часть			
2.1	Реферат «Физические исследования инновационных материалов»	1	5
2.2	Участие в НИРС	10	25
2.3	Участие в олимпиаде (физика, математика, иностранный язык)	5	10
2.3.1	участие	5	5
2.3.2	призер	10	10
2.4	Публикация в индексируемом журнале (совместно с преподавателем)	10	10
2.5	Акселерационная программа/ проект Росмолодежи	20	40
2.5.1	участие	20	20
2.5.2	грант	40	40
	Промежуточная аттестация по дисциплине	0	40
	Итого баллов по вариативной части	40	60
	Итого баллов по дисциплине		100
2 семестр			
№	Вид работ	Min	Max
1. Обязательная часть			
1.1	Текущий контроль успеваемости по проверке сформированности остаточных знаний		
	Текущий контроль успеваемости (ТКУ)	0	10
1.2	Выполнение практических работ		
1.2.1	Машиностроение. Тема 2: Типы двигателей.	8	10

1.2.2	Электротехника и электроника Тема 1: Законы электротехники.	6	10
1.2.3	Электротехника и электроника. Тема 2: Тенденции развития электроники. Инновационные материалы в электронике.	6	10
	Итого баллов по обязательной части	20	40
2. Вариативная часть			
2.1	Реферат «Физические исследования инновационных материалов»	1	5
2.2	Участие в НИРС	10	25
2.3	Участие в олимпиаде (физика, математика, иностранный язык)	5	10
2.3.1	участие	5	5
2.3.2	призер	10	10
2.4	Публикация в индексируемом журнале (совместно с преподавателем)	10	10
2.5	Акселерационная программа/ проект Росмолодежи	20	40
2.5.1	участие	20	20
2.5.2	грант	40	40
	Промежуточная аттестация по дисциплине	0	40
	Итого баллов по вариативной части	40	60
	Итого баллов по дисциплине		100

4. Содержание оценочных средств текущего контроля. Критерии оценивания
Задания репродуктивного уровня:

**Комплект контрольных работ для текущего контроля (письменный перевод) по
дисциплине**

ИНОСТРАННЫЙ ЯЗЫК (ПРОДВИНУТЫЙ УРОВЕНЬ)

1 семестр

Вариант 1

Переведите текст письменно:

Failure theories

There are four failure theories: maximum shear stress theory, maximum normal stress theory, maximum strain energy theory, and maximum distortion energy theory. Out of these four theories of failure, the maximum normal stress theory is only applicable for brittle materials, and the remaining three theories are applicable for ductile materials. Of the latter three, the distortion energy theory provides most accurate results in majority of the stress conditions. The strain energy theory needs the value of Poisson's ratio of the part material, which is often not readily available. The maximum shear stress theory is conservative. For simple unidirectional normal stresses all theories are equivalent, which means all theories will give the same result.

Maximum Shear Stress Theory — This theory postulates that failure will occur if the magnitude of the maximum shear stress in the part exceeds the shear strength of the material determined from uniaxial testing.

Maximum Normal Stress Theory — This theory postulates that failure will occur if the maximum normal stress in the part exceeds the ultimate tensile stress of the material as determined from uniaxial testing. This theory deals with brittle materials only. The maximum tensile stress should be less than or equal to ultimate tensile stress divided by factor of safety. The magnitude of the maximum compressive stress should be less than ultimate compressive stress divided by factor of safety.

Maximum Strain Energy Theory — This theory postulates that failure will occur when the strain energy per unit volume due to the applied stresses in a part equals the strain energy per unit volume at the yield point in uniaxial testing.

Maximum Distortion Energy Theory — This theory is also known as shear energy theory or von Mises-Hencky theory. This theory postulates that failure will occur when the distortion energy per unit volume due to the applied stresses in a part equals the distortion energy per unit volume at the yield point in uniaxial testing. The total elastic energy due to strain can be divided into two parts: one part causes change in volume, and the other part causes change in shape. Distortion energy is the amount of energy that is needed to change the shape.

Вариант 2

Materials, such as solids, liquids and gases, are composed of molecules separated by space. On a microscopic scale, materials have cracks and discontinuities. However, certain physical phenomena can be modeled assuming the materials exist as a *continuum, meaning the matter in the body is continuously distributed and fills the entire region of space it occupies*. A continuum is a body that can be continually sub-divided into infinitesimal elements with properties being those of the bulk material.

The validity of the continuum assumption may be verified by a theoretical analysis, in which either some clear periodicity is identified or statistical homogeneity and ergodicity of the microstructure exists. More specifically, the continuum hypothesis/assumption hinges on the concepts of a representative elementary volume and separation of scales based on the Hill–Mandel condition. This condition provides a link between an experimentalist's and a theoretician's viewpoint on constitutive equations (linear and nonlinear elastic/inelastic or coupled fields) as well as a way of spatial and statistical averaging of the microstructure.^[1]

When the separation of scales does not hold, or when one wants to establish a continuum of a finer resolution than that of the representative volume element (RVE) size, one employs a *statistical volume element* (SVE), which, in turn, leads to random continuum fields. The latter then provide a micromechanics basis for stochastic finite elements (SFE). The levels of SVE and RVE link continuum mechanics to statistical mechanics. The RVE may be assessed only in a limited way via experimental testing: when the constitutive response becomes spatially homogeneous.

2 семестр

Вариант 1

The modern understanding of the properties of a semiconductor relies on quantum physics to explain the

movement of charge carriers in a crystal lattice. Doping greatly increases the number of charge carriers within the crystal. When a doped semiconductor contains mostly free holes it is called "p-type", and when it contains mostly free electrons it is known as "n-type". The semiconductor materials used in electronic devices are doped under precise conditions to control the concentration and regions of p- and n-type dopants. A single semiconductor crystal can have many p- and n-type regions; the p-n junctions between these regions are responsible for the useful electronic behavior.

Some of the properties of semiconductor materials were observed throughout the mid 19th and first decades of the 20th century. The first practical application of semiconductors in electronics was the 1904 development of the cat's-whisker detector, a primitive semiconductor diode used in early radio receivers. Developments in quantum physics in turn allowed the development of the transistor in 1947^[2] and the integrated circuit in 1958.

A large number of elements and compounds have semiconducting properties, including:

- Certain pure elements are found in Group 14 of the periodic table; the most commercially important of these elements are silicon and germanium. Silicon and germanium are used here effectively because they have 4 valence electrons in their outermost shell which gives them the ability to gain or lose electrons equally at the same time.
- Binary compounds, particularly between elements in Groups 13 and 15, such as gallium arsenide, Groups 12 and 16, groups 14 and 16, and between different group 14 elements, e.g. silicon carbide.
- Certain ternary compounds, oxides and alloys.
- Organic semiconductors, made of organic compounds.

Вариант 2

Semiconductors are defined by their unique electric conductive behavior, somewhere between that of a conductor and an insulator. The differences between these materials can be understood in terms of the quantum states for electrons, each of which may contain zero or one electron (by the Pauli exclusion principle). These states are associated with the electronic band structure of the material. Electrical conductivity arises due to the presence of electrons in states that are delocalized (extending through the material), however in order to transport electrons a state must be *partially filled*, containing an electron only part of the time. If the state is always occupied with an electron, then it is inert, blocking the passage of other electrons via that state. The energies of these quantum states are critical, since a state is partially filled only if its energy is near the Fermi level (see Fermi-Dirac statistics).

High conductivity in a material comes from it having many partially filled states and much state delocalization. Metals are good electrical conductors and have many partially filled states with energies near their Fermi level. Insulators, by contrast, have few partially filled states, their Fermi levels sit within band gaps with few energy states to occupy. Importantly, an insulator can be made to conduct by increasing its temperature: heating provides energy to promote some electrons across the band gap, inducing partially filled states in both the band of states beneath the band gap (valence band) and the band of states above the band gap (conduction band). An (intrinsic) semiconductor has a band gap that is smaller than that of an insulator and at room temperature significant numbers of electrons can be excited to cross the band gap. A pure semiconductor, however, is not very useful, as it is neither a very good insulator nor a very good conductor. However, one important feature of semiconductors (and some insulators, known as *semi-insulators*) is that their conductivity can be increased and controlled by doping with impurities and gating with electric fields. Doping and gating move either the conduction or valence band much closer to the Fermi level, and greatly increase the number of partially filled states.

Задания практико-ориентированного / исследовательского / творческого уровня:

Задание для проведения письменной контрольной работы «Официальное письмо»

Your institution is holding a conference “*Tenth International Conference on Sustainable Water Resources Management*”

Write an invitation letter to one of the key speakers, Professor *Challenger* inviting him to the conference. Include the following:

the location (the address of your institution)

the dates: 19-22 May 2021

the purpose of the conference *is to bring together researchers who are interested in sustainable development issues and challenges, water environment management and ecosystems research.*

the contact details: *site www.RSHUconf2021.ru. 2021conf@RSHU.ru.*

contact person (*conference coordinator*: your name a telephone number)

Add abstracts reception details (the closing date, the volume) and details of the Newsletter publication (Internet site, the date of issue).

Задание для написания аннотации статьи: Подобрать статью по теме магистерской диссертации. Объем статьи от 3 000 знаков с пробелами. Написать аннотацию. Объем 1000 -1200 знаков с пробелами.

**Задание для проведения моделируемой ситуации «Конференция»
(текущий контроль)
по дисциплине**

ИНОСТРАННЫЙ ЯЗЫК (ПРОДВИНУТЫЙ УРОВЕНЬ)

Моделируемая ситуация «Конференция»

1. Предварительно изучить подготовленные преподавателем методические указания по составлению научного доклада на иностранном языке (цель, структура и содержание доклада), а также лексический материал для написания доклада и его последующего обсуждения на конференции.
2. Составить текст доклада на иностранном языке по одной из тематик, предложенных преподавателем, либо по теме дипломного исследования.
3. Подготовить презентацию на иностранном языке для демонстрации основных положений рассматриваемой проблемы, используя современные технические средства.
4. Выступить перед аудиторией с докладом и презентацией (время выступления – 5-7 минут), принять активное участие в последующем обсуждении доклада на иностранном языке.
5. Подготовить вопросы на иностранном языке для обсуждения докладов других участников конференции. Принимать активное участие в обсуждении докладов.

4. Содержание оценочных средств промежуточной аттестации. Критерии оценивания

**Комплект заданий для проведения зачета (1 семестр)
Вариант № 1**

Задание 1. Письменный перевод текста

Forensic engineering has been defined as “*the investigation of failures - ranging from serviceability to catastrophic - which may lead to legal activity, including both civil and criminal*”. It therefore includes the investigation of materials, products, structures or components that fail or do not operate or function as

intended, causing personal injury, damage to property or economic loss. The consequences of failure may give rise to action under either criminal or civil law including but not limited to health and safety legislation, the laws of contract and/or product liability and the laws of tort. The field also deals with retracing processes and procedures leading to accidents in operation of vehicles or machinery. Generally, the purpose of a forensic engineering investigation is to locate cause or causes of failure with a view to improve performance or life of a component, or to assist a court in determining the facts of an accident. It can also involve investigation of intellectual property claims, especially patents.

Failure mode and effects analysis (FMEA) and fault tree analysis methods also examine product or process failure in a structured and systematic way, in the general context of safety engineering. However, all such techniques rely on accurate reporting of failure rates, and precise identification, of the failure modes involved.

There is some common ground between forensic science and forensic engineering, such as scene of crime and scene of accident analysis, integrity of the evidence and court appearances. Both disciplines make extensive use of optical and scanning electron microscopes, for example. They also share common use of spectroscopy (infrared, ultraviolet, and nuclear magnetic resonance) to examine critical evidence. Radiography using X-rays (such as X-ray computed tomography), or neutrons is also very useful in examining thick products for their internal defects before destructive examination is attempted. Often, however, a simple hand lens may reveal the cause of a particular problem.

Задание 2. Реферирование

SURFACE HARDENING, a process that includes a wide variety of techniques, is used to improve the wear resistance of parts without affecting the more soft, tough interior of the part. This combination of hard surface and resistance to breakage upon impact is useful in parts such as a cam or ring gear, bearings or shafts, turbine applications, and automotive components that must have a very hard surface to resist wear, along with a tough interior to resist the impact that occurs during operation. Most surface treatments result in compressive residual stresses at the surface that reduce the probability of crack initiation and help arrest crack propagation at the case-core interface. Further, the surface hardening of steel can have an advantage over through hardening because less expensive low-carbon and medium-carbon steels can be surface hardened with minimal problems of distortion and cracking associated with the through hardening of thick sections. There are two distinctly different approaches to the various methods for surface hardening:

Methods that involve an intentional buildup or addition of a new layer

Methods that involve surface and subsurface modification without any intentional buildup or increase in part dimensions

Вариант № 2

Задание 1. Письменный перевод текста

Case-hardening or surface hardening is the process of hardening the surface of a metal object while allowing the metal deeper underneath to remain soft, thus forming a thin layer of harder metal (called the "case") at the surface. For iron or steel with low carbon content, which has poor to no hardenability of its own, the case-hardening process involves infusing additional carbon or nitrogen into the surface layer. Case-hardening is usually done after the part has been formed into its final shape, but can also be done to increase the hardening element content of bars to be used in a pattern welding or similar process. The term **face hardening** is also used to describe this technique, when discussing modern armour.

Hardening is desirable for metal components that are subject to sliding contact with hard or abrasive materials, as the hardened metal is more resistant to surface wear. However, because hardened metal is usually more brittle than softer metal, through-hardening (that is, hardening the metal uniformly throughout the piece) is not always a suitable choice. In such circumstances, case-hardening can produce a component that will not fracture (because of the soft core that can absorb stresses without cracking), but

also provides adequate wear resistance on the hardened surface.

Flame or induction hardening are processes in which the surface of the steel is heated very rapidly to high temperatures (by direct application of an oxy-gas flame, or by induction heating) then cooled rapidly, generally using water; this creates a "case" of martensite on the surface.

Задание 2. Реферированиe

A **deformation mechanism map** is a way of representing the dominant deformation mechanism in a material loaded under a given set of conditions and thereby its likely failure mode. Deformation mechanism maps usually consist of some kind of stress plotted against some kind of temperature axis, typically stress normalized using the shear modulus versus homologous temperature with contours of strain rate.^{[1][2]} For a given set of operating conditions calculations are undergone and experiments performed to determine the predominant mechanism operative for a given material. Constitutive equations for the type of mechanism have been developed for each deformation mechanism and are used in the construction of the maps. The theoretical shear strength of the material is independent of temperature and located along the top of the map, with the regimes of plastic deformation mechanisms below it. Constant strain rate contours can be constructed on the maps using the constitutive equations of the deformation mechanisms which makes the maps extremely useful.^[3]

Deformation maps can also be constructed using any two of stress (normalized), temperature (normalized) and strain rate, with contours of the third variable. A stress/strain rate plot is useful because power-law mechanisms then have contours of temperature which are straight lines.

Deformation mechanism maps should not be confused with the similar but distinct failure mechanism maps, which were also first developed by Ashby.

Вариант № 3

Задание 1. Письменный перевод текста

New developments in laser technology have had a substantial impact on the materials processing market over the past decade, and there are now four different laser technologies that predominate. These are high power direct diode lasers (HPDDLs), sealed CO₂ lasers, fiber lasers, and flowing gas CO₂ lasers. It is important to understand the distinguishing output and operating characteristics of each of these sources. The HPDDL is built from diode laser bars, which are a single, monolithic semiconductor substrate on which several emit

ters are fabricated. A single bar can have a total output as high as 100 W. These bars can be stacked close together, and multiple stacks can be combined to produce extremely compact assemblies that deliver multiple kW's of laser power. Because the output of a HPDDL comes from numerous individual emitters spread over an area several millimeters in size, specialized optics must be employed in order to convert this raw output into a far-field format useful for most applications. This collected light can then be focused on to the work piece directly (termed free space delivery), or channeled into a single optical fiber, enabling remote (up to 30 meters) delivery of the laser source from the processing area. A typical output beam from a free space HPDDL system (Figure 2) might be 12 mm x 1 mm at its point of focus, while a fiber delivered system might produce a round spot that ranges from tenth's to several millimeters. One key advantage of HPDDLs is their wall plug (electrical conversion) efficiency, which is many times higher than for any other laser type. This translates directly into lower operating cost for the system, since less electricity is required to produce a given amount of output power. HPDDLs are also very physically compact and lightweight compared with most other industrial lasers, therefore making their integration cost very low. In addition, a closed loop cooling system can be connected to the diode stack affording a typical operating lifetime of tens of thousands of hours. The end result is that

HPDDLs offer substantially lower cost of ownership than other laser technologies. In addition, the initial capital cost is usually lower for a HPDDL than for another laser type of equivalent output power.

Задание 2. Реферирование

Continuum mechanics is a branch of mechanics that deals with the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

Materials, such as solids, liquids and gases, are composed of molecules separated by space. On a microscopic scale, materials have cracks and discontinuities. However, certain physical phenomena can be modeled assuming the materials exist as a *continuum*, meaning the matter in the body is continuously distributed and fills the entire region of space it occupies. A continuum is a body that can be continually sub-divided into infinitesimal elements with properties being those of the bulk material.

The validity of the continuum assumption may be verified by a theoretical analysis, in which either some clear periodicity is identified or statistical homogeneity and ergodicity of the microstructure exists. More specifically, the continuum hypothesis/assumption hinges on the concepts of a representative elementary volume and separation of scales based on the Hill-Mandel condition. This condition provides a link between an experimentalist's and a theoretician's viewpoint on constitutive equations (linear and nonlinear elastic/inelastic or coupled fields) as well as a way of spatial and statistical averaging of the microstructure.

Таблица 4. Критерии оценивания выполнения контрольной работы (письменный перевод) по дисциплине

Критерий оценивания	Результат
Неполный перевод (менее $\frac{1}{2}$). Непонимание содержания текста магистрантом.	0-10 баллов
Переведено ($\frac{2}{3} - \frac{1}{2}$) текста с многочисленными лексическими, грамматическими и стилистическими ошибками, которые затрудняют общее понимание текста.	10 баллов
Перевод выполнен в полном объеме, но встречаются лексические, грамматические и стилистические неточности, которые не препятствуют общему пониманию текста, однако не согласуются с нормами литературного языка и стилем научного изложения.	15 баллов
Общая адекватность перевода текста в полном объеме. Отсутствие смысловых искажений. Русский текст грамматически корректен, лексико-терминологические единицы и синтаксические структуры, характерные для научного стиля речи, соответствуют норме и узусу языка перевода.	20 баллов

Таблица 4.1 Критерии оценивания контрольной работы «Официальное письмо»

Критерии оценивания	Результат
Вопрос задания только частично затронут. Композиции не хватает логики. Значительные сложности с использованием фактов и проблемных вопросов в качестве смысловой опоры. Нарушена логика изложения. Лексика используется в ограниченном объеме, с существенными ошибками. Стиль не всегда соответствует заданному формату речи. Процесс коммуникации частично нарушен из-за значительных ошибок (согласование, временные формы). Однако простые языковые формы используются правильно.	0-10 баллов

<p>Вопрос задания понят правильно, тема частично раскрыта. Композиции частично не хватает логики. Возможны стилистические отклонения, отсутствие средств связности при сохранении целостности текста. Некоторые сложности с использованием фактов и проблемных вопросов в качестве смысловой опоры. Небольшое количество серьёзных ошибок (до 25% высказываний), не препятствующих коммуникации. Простые грамматические структуры не вызывают затруднений;</p>	10 баллов
<p>Демонстрирует знание законов композиции и стиля и умение логически верно, аргументированно и ясно строить письменную речь. Стиль полностью соответствует заданному формату речи. Тема достаточно хорошо раскрыта. Достаточный для выполнения задачи объём лексики и диапазон грамматических средств. В основном уместное употребление лексических единиц. Небольшое количество ошибок (до 10% высказываний), не препятствующих коммуникации. Простые грамматические структуры не вызывают затруднений;</p>	15 баллов
<p>Демонстрирует знание законов композиции и стиля и умение логически верно, аргументированно и ясно строить письменную речь. Стиль полностью соответствует заданному формату речи. Тема раскрыта в полном объёме. Мысли чётко сформулированы, логически оформлены. Предложенные в качестве смысловой опоры факты и проблемные вопросы развёрнуты с использованием творческого воображения. Богатый и сложный по структуре язык, широкий объём лексики (в соответствии с пройденными разделами грамматики и лексическим материалом). Практически без ошибок;</p>	20 баллов

Таблица 4.2 Критерии оценивания написания «Аннотации статьи»

Критерии оценивания	Результат
<p>Вопрос задания только частично затронут. Композиции не хватает логики. Значительные сложности с использованием фактов и проблемных вопросов в качестве смысловой опоры. Нарушена логика изложения. Лексика используется в ограниченном объёме, с существенными ошибками. Стиль не всегда соответствует заданному формату речи. Процесс коммуникации частично нарушен из-за значительных ошибок (согласование, временные формы). Однако простые языковые формы используются правильно.</p>	0-10 баллов
<p>Вопрос задания понят правильно, тема частично раскрыта. Композиции частично не хватает логики. Возможны стилистические отклонения, отсутствие средств связности при сохранении целостности текста. Некоторые сложности с использованием фактов и проблемных вопросов в качестве смысловой опоры. Небольшое количество серьёзных ошибок (до 25% высказываний), не препятствующих коммуникации. Простые грамматические структуры не вызывают затруднений;</p>	10 баллов
<p>Демонстрирует знание законов композиции и стиля и умение логически верно, аргументированно и ясно строить письменную речь. Стиль полностью соответствует заданному формату речи. Тема достаточно хорошо раскрыта. Достаточный для выполнения задачи объём лексики и диапазон грамматических средств. В основном уместное употребление лексических единиц. Небольшое количество ошибок (до 10% высказываний), не препятствующих коммуникации. Простые грамматические структуры не вызывают затруднений;</p>	15 баллов
<p>Демонстрирует знание законов композиции и стиля и умение логически верно, аргументированно и ясно строить письменную речь. Стиль полностью соответствует заданному формату речи. Тема раскрыта в полном объёме. Мысли чётко сформулированы,</p>	20 баллов

логически оформлены. Богатый и сложный по структуре язык, широкий объём лексики (в соответствии с пройденными разделами грамматики и лексическим материалом). Практически без ошибок;

Таблица 4.3 Критерии оценивания проведения моделируемой ситуации «Конференция»:

Критерии оценивания	Результат
Вопрос задания только частично затронут. Композиции не хватает логики. Значительные сложности с использованием фактов и проблемных вопросов в качестве смысловой опоры. Нарушена логика изложения. Лексика используется в ограниченном объеме, с существенными ошибками. Стиль не всегда соответствует заданному формату речи. Процесс коммуникации частично нарушен из-за значительных ошибок (согласование, временные формы). Однако простые языковые формы используются правильно.	0-10 баллов
Вопрос задания понят правильно, тема частично раскрыта. Композиции частично не хватает логики. Возможны стилистические отклонения, отсутствие средств связности при сохранении целостности текста. Некоторые сложности с использованием фактов и проблемных вопросов в качестве смысловой опоры. Небольшое количество серьезных ошибок (до 25% высказываний), не препятствующих коммуникации. Простые грамматические структуры не вызывают затруднений;	10 баллов
Демонстрирует знание законов композиции и стиля и умение логически верно, аргументированно и ясно строить письменную речь. Стиль полностью соответствует заданному формату речи. Тема достаточно хорошо раскрыта. Достаточный для выполнения задачи объем лексики и диапазон грамматических средств. В основном уместное употребление лексических единиц. Небольшое количество ошибок (до 10% высказываний), не препятствующих коммуникации. Простые грамматические структуры не вызывают затруднений;	15 баллов
Демонстрирует знание законов композиции и стиля и умение логически верно, аргументированно и ясно строить письменную речь. Стиль полностью соответствует заданному формату речи. Тема раскрыта в полном объеме. Мысли четко сформулированы, логически оформлены. Предложенные в качестве смысловой опоры факты и проблемные вопросы развёрнуты с использованием творческого воображения. Богатый и сложный по структуре язык, широкий объем лексики (в соответствии с пройденными разделами грамматики и лексическим материалом). Практически без ошибок;	20 баллов